Switch-Mode Power Rectifiers

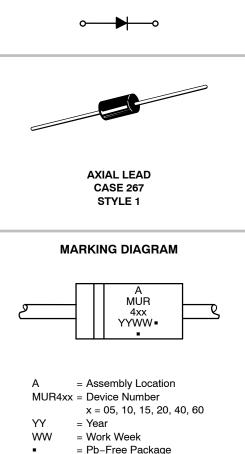
MUR405, MUR410, MUR415, MUR420, MUR440, MUR460

These state-of-the-art devices are a series designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Ultrafast 25 ns, 50 ns and 75 ns Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 600 V
- Shipped in Plastic Bags, 500 per Bag
- Available in Tape and Reel, 1500 per Reel, by Adding a "RLG" Suffix to the Part Number
- MUR460 available in Fan Fold Ammo Pak, 1000 per Box, by adding a "FFG" suffix to the part number
- These are Pb–Free Packages*

Mechanical Characteristics:


- Case: Epoxy, Molded
- Weight: 1.1 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Cathode indicated by Polarity Band

ON Semiconductor®

www.onsemi.com

ULTRAFAST RECTIFIERS 4.0 AMPERES, 50–600 VOLTS

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

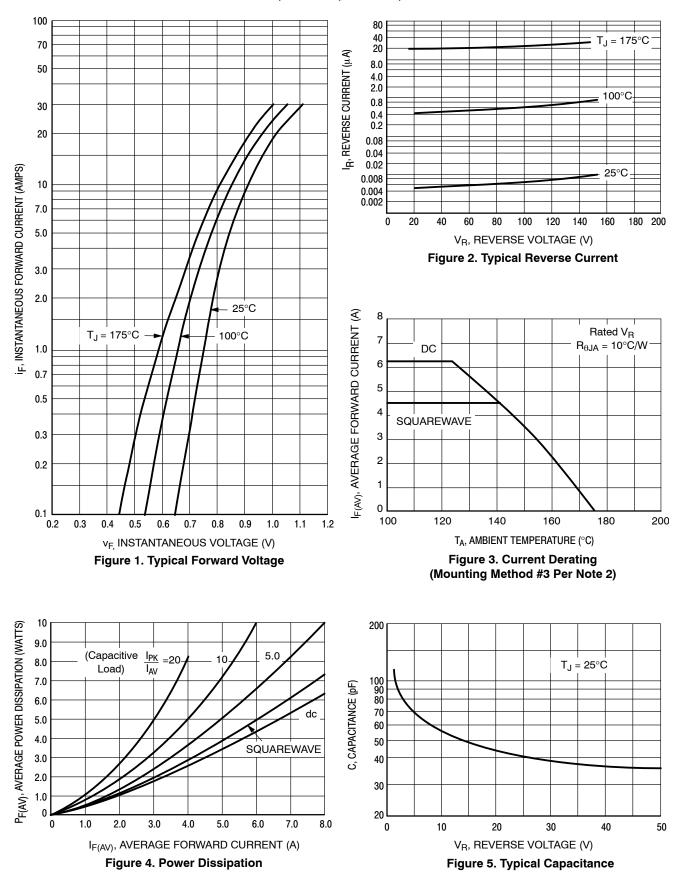
		MUR						
Rating	Symbol	405	410	415	420	440	460	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	400	600	V
Average Rectified Forward Current (Square Wave) (Mounting Method #3 Per Note 2)	I _{F(AV)}	4.0 @ T _A = 80°C		4.0 @ T _A = 40°C		A		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	I _{FSM}	125				110		A
Operating Junction Temperature & Storage Temperature	T _J , T _{stg}	- 65 to +175			°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

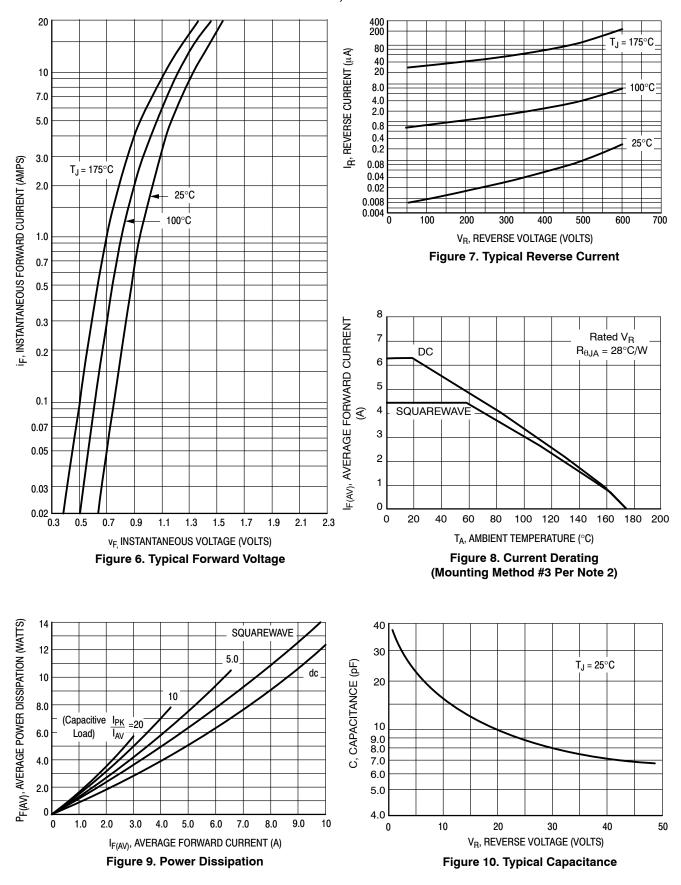
THERMAL CHARACTERISTICS

		MUR						
Rating		405	410	415	420	440	460	Unit
Maximum Thermal Resistance, Junction-to-Ambient		See Note 2					°C/W	
Maximum Thermal Resistance, Junction-to-Case Body	$\Psi_{\theta JC}$	6.6		°C/W				

ELECTRICAL CHARACTERISTICS

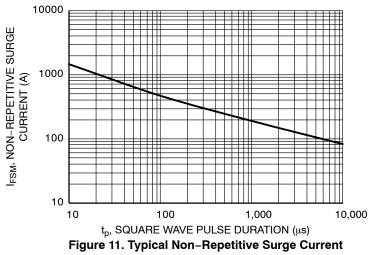

		MUR						
Rating	Symbol	405	410	415	420	440	460	Unit
ximum Instantaneous Forward Voltage (Note 1) v_F = 3.0 A, T_J = 150°C) 0.71 = 3.0 A, T_J = 25°C) 0.88 = 4.0 A, T_J = 25°C) 0.89			1.05 1.25 1.28		V			
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	İR	150 5		250 10		μA		
Maximum Reverse Recovery Time ($I_F = 1.0 \text{ A}$, di/dt = 50 A/µs) ($I_F = 0.5 \text{ A}$, $i_R = 1.0 \text{ A}$, $I_{REC} = 0.25 \text{ A}$)	t _{rr}	35 25		7 5	5 0	ns		
Maximum Forward Recovery Time (I _F = 1.0 A, di/dt = 100 A/ μ s, Recovery to 1.0 V)	t _{fr}	25		5	0	ns		
Controlled Avalanche Energy (Maximum)	W _{aval}				5			mJ
Typical Peak Reverse Recovery Current $(I_F = 1.0 \text{ A}, \text{ di/dt} = 50 \text{ A}/\mu\text{s})$	I _{RM}		0	.8	•	1	.7	A

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.


ORDERING INFORMATION

Device	Package	Shipping [†]			
MUR405G	Axial Lead*				
MUR410G	Axial Lead*	500 Units / Bag			
MUR410RLG	Axial Lead*	1500 / Tape & Reel			
MUR415G	Axial Lead*	500 Units / Bag			
MUR415RLG	Axial Lead*	1500 / Tape & Reel			
MUR420G	Axial Lead*	500 Units / Bag			
MUR420RLG	Axial Lead*	1500 / Tape & Reel			
MUR440G	Axial Lead*	500 Units / Bag			
MUR440RLG	Axial Lead*	1500 / Tape & Reel			
MUR460G	Axial Lead*	500 Units / Bag			
MUR460FFG	Axial Lead*	1000 Units / Box			
MUR460RLG	Axial Lead*	1500 / Tape & Reel			

†For information on tape and reel and ammo pak specifications, including part orientation, tape sizes and box dimensions, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*These packages are inherently Pb-Free.

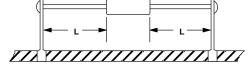


MUR405, MUR410, MUR415, MUR420

MUR440, MUR460

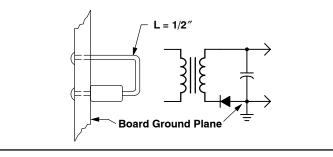
MUR440, MUR460

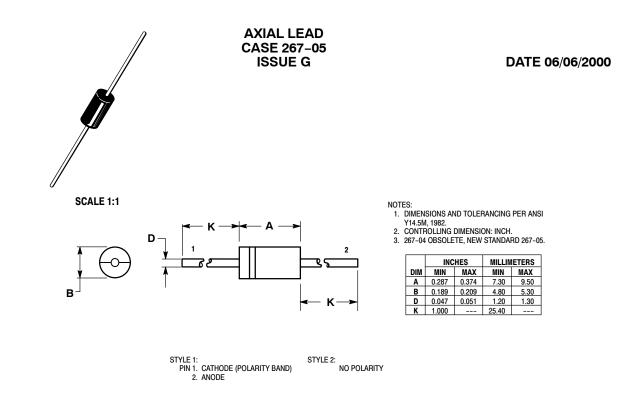
*Typical performance based on a limited sample size. ON Semiconductor does not guarantee ratings not listed in the Maximum Ratings table.


NOTE 2 — AMBIENT MOUNTING DATA

Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $\textbf{R}_{\theta \textbf{JA}}$ IN STILL AIR


Mounti	ing	Lead Length, L (IN) 1/8 1/4 1/2 3/4				Units		
Metho	bd							
1		50	51	53	55	°C/W		
2	R _{0JA}	58	59	61	63	°C/W		
3			°C/W					



MOUNTING METHOD 3

P.C. Board with $1-1/2'' \times 1-1/2''$ Copper Surface

DOCUMENT NUMBER:	98ASB42170B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	AXIAL LEAD		PAGE 1 OF 1					
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.								

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative